TY - JOUR
T1 - Carbon fluxes from subducted carbonates revealed by uranium excess at Mount Vesuvius, Italy
AU - Avanzinelli, Riccardo
AU - Casalini, Martina
AU - Elliott, Tim
AU - Conticelli, Sandro
PY - 2018/3/1
Y1 - 2018/3/1
N2 - The fate of carbonate-rich sediments recycled at destructive plate margins is a key issue for constraining the budget of deep CO2 supplied to the atmosphere by volcanism. Experimental studies have demonstrated that metasomatic melts can be generated by partial melting of subducted carbonate-pelitic sediments, but signatures of the involvement of such components in erupted magmas are more elusive. We have made new U-Th disequilibria, Sr-Nd-Pb isotope, and high-precision δ238U analyses on lavas from Mount Vesuvius (Italy) and show that their measured 238U excesses require a mantle source affected by the addition of U-rich carbonated melts, generated by partial melting of subducted calcareous sediments in the presence of residual epidote. Accordingly, we argue that the occurrence of 238U excesses in “sediment-dominated” arc magmas represents diagnostic evidence of addition of carbonate sediments via subduction, hence providing constraints on deep carbon cycling within Earth. Our quantitative enrichment model, combined with published experimental results, allows us to estimate a resulting flux of 0.15–0.8 Mt/yr CO2 from the subducted carbonates to the mantle source of Mount Vesuvius.
AB - The fate of carbonate-rich sediments recycled at destructive plate margins is a key issue for constraining the budget of deep CO2 supplied to the atmosphere by volcanism. Experimental studies have demonstrated that metasomatic melts can be generated by partial melting of subducted carbonate-pelitic sediments, but signatures of the involvement of such components in erupted magmas are more elusive. We have made new U-Th disequilibria, Sr-Nd-Pb isotope, and high-precision δ238U analyses on lavas from Mount Vesuvius (Italy) and show that their measured 238U excesses require a mantle source affected by the addition of U-rich carbonated melts, generated by partial melting of subducted calcareous sediments in the presence of residual epidote. Accordingly, we argue that the occurrence of 238U excesses in “sediment-dominated” arc magmas represents diagnostic evidence of addition of carbonate sediments via subduction, hence providing constraints on deep carbon cycling within Earth. Our quantitative enrichment model, combined with published experimental results, allows us to estimate a resulting flux of 0.15–0.8 Mt/yr CO2 from the subducted carbonates to the mantle source of Mount Vesuvius.
U2 - 10.1130/G39766.1
DO - 10.1130/G39766.1
M3 - Article (Academic Journal)
SN - 0091-7613
VL - 46
SP - 259
EP - 262
JO - Geology
JF - Geology
IS - 3
ER -