Cardiac-specific overexpression of caveolin-3 preserves t-tubular I Ca during heart failure in mice

Cherrie H T Kong, Simon M Bryant, Judy J Watson, David M Roth, Hemal H Patel, Mark B Cannell, Andrew F James*, Clive H Orchard

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

7 Citations (Scopus)
284 Downloads (Pure)


NEW FINDINGS: What is the central question of this study? What is the cellular basis of the protection conferred on the heart by overexpression of caveolin-3 (Cav-3 OE) against many of the features of heart failure normally observed in vivo? What is the main finding and its importance? Cav-3 overexpression has little effect in normal ventricular myocytes but reduces cellular hypertrophy and preserves t-tubular ICa , but not local t-tubular Ca2+ release, in heart failure induced by pressure overload in mice. Thus Cav-3 overexpression provides specific but limited protection following induction of heart failure, although other factors disrupt Ca2+ release.

ABSTRACT: Caveolin-3 (Cav-3) is an 18 kDa protein that has been implicated in t-tubule formation and function in cardiac ventricular myocytes. During cardiac hypertrophy and failure, Cav-3 expression decreases, t-tubule structure is disrupted and excitation-contraction coupling (ECC) is impaired. Previous work has suggested that Cav-3 overexpression (OE) is cardio-protective, but the effect of Cav-3 OE on these cellular changes is unknown. We therefore investigated whether Cav-3 OE in mice is protective against the cellular effects of pressure overload induced by 8 weeks' transverse aortic constriction (TAC). Cav-3 OE mice developed cardiac dilatation, decreased stroke volume and ejection fraction, and hypertrophy and pulmonary congestion in response to TAC. These changes were accompanied by cellular hypertrophy, a decrease in t-tubule regularity and density, and impaired local Ca2+ release at the t-tubules. However, the extent of cardiac and cellular hypertrophy was reduced in Cav-3 OE compared to WT mice, and t-tubular Ca2+ current (ICa ) density was maintained. These data suggest that Cav-3 OE helps prevent hypertrophy and loss of t-tubular ICa following TAC, but that other factors disrupt local Ca2+ release.

Original languageEnglish
Pages (from-to)654-666
Number of pages13
JournalExperimental Physiology
Issue number5
Early online date14 Mar 2019
Publication statusPublished - 1 May 2019


  • TAC
  • excitation-contraction coupling
  • t-tubules
  • caveolin-3
  • overexpression


Dive into the research topics of 'Cardiac-specific overexpression of caveolin-3 preserves t-tubular I Ca during heart failure in mice'. Together they form a unique fingerprint.

Cite this