Causal inference with observational data: the need for triangulation of evidence

Research output: Contribution to journalArticle (Academic Journal)peer-review

14 Downloads (Pure)


The goal of much observational research is to identify risk factors that have a causal effect on health and social outcomes. However, observational data are subject to biases from confounding, selection and measurement, which can result in an underestimate or overestimate of the effect of interest. Various advanced statistical approaches exist that offer certain advantages in terms of addressing these potential biases. However, although these statistical approaches have different underlying statistical assumptions, in practice they cannot always completely remove key sources of bias; therefore, using design-based approaches to improve causal inference is also important. Here it is the design of the study that addresses the problem of potential bias – either by ensuring it is not present (under certain assumptions) or by comparing results across methods with different sources and direction of potential bias. The distinction between statistical and design-based approaches is not an absolute one, but it provides a framework for triangulation – the thoughtful application of multiple approaches (e.g. statistical and design based), each with their own strengths and weaknesses, and in particular sources and directions of bias. It is unlikely that any single method can provide a definite answer to a causal question, but the triangulation of evidence provided by different approaches can provide a stronger basis for causal inference. Triangulation can be considered part of wider efforts to improve the transparency and robustness of scientific research, and the wider scientific infrastructure and system of incentives.
Original languageEnglish
Pages (from-to)563-578
Number of pages16
JournalPsychological Medicine
Issue number4
Early online date8 Mar 2021
Publication statusPublished - Mar 2021


  • causal inference
  • epidemiology
  • mental health
  • observational data
  • triangulation

Fingerprint Dive into the research topics of 'Causal inference with observational data: the need for triangulation of evidence'. Together they form a unique fingerprint.

Cite this