Projects per year
Abstract
A continuous wave distributed feedback diode laser operating in the near infrared at wavelengths close to 1650 nm has been used to measure the extinction of light by single aerosol particles. The technique of optical feedback cavity ring-down spectroscopy (CRDS) was used for measurement of CRDS events at a repetition rate of 1.25 kHz. This very high repetition rate enabled multiple measurements of the extinction of light by single aerosol particles for the first time and demonstrated the dependence of light scattering on the position of a particle within the laser beam. A model is proposed to explain quantitatively this phenomenon. The minimum detectable dimensionless extinction coefficient epsilon(min) was determined to be 3x10(-6). Extinction values obtained for single spherical polymer beads from a monodisperse sample of particles of diameter of 4 mu m are in near-quantitative agreement with the values calculated by the Mie scattering theory. The deviations from the Mie theory expected for measurement of extinction by CRDS using a continuous wave laser are discussed in the companion paper. (C) 2007 American Institute of Physics.
Translated title of the contribution | CRDS measurements of single aerosol particle extinction part 1: The effect of position of a particle within the laser beam on extinction |
---|---|
Original language | English |
Article number | 174302 |
Pages (from-to) | 174302:1 - 174302:7 |
Number of pages | 7 |
Journal | Journal of Chemical Physics |
Volume | 126 |
Issue number | 17 |
DOIs | |
Publication status | Published - 7 May 2007 |
Bibliographical note
Publisher: American Institute of PhysicsFingerprint
Dive into the research topics of 'Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. The effect of position of a particle within the laser beam on extinction'. Together they form a unique fingerprint.Projects
- 1 Finished
-
NEW FRONTIERS IN QUANTITATIVE INFRA RED TO ULTRAVIOLET SPECTROSCOPY
1/01/07 → 1/07/12
Project: Research