Abstract
New analytical approaches and discoveries are demanding fresh thinking about the early fossil record. The 1.88-Ga Gunflint chert provides an important benchmark for the analysis of early fossil preservation. High-resolution analysis of Gunflintia shows that microtaphonomy can help to resolve long-standing paleobiological questions. Novel 3D nanoscale reconstructions of the most ancient complex fossil Eosphaera reveal features hitherto unmatched in any crown-group microbe. While Eosphaera may preserve a symbiotic consortium, a stronger conclusion is that multicellular morphospace was differently occupied in the Paleoproterozoic. The 3.46-Ga Apex chert provides a test bed for claims of biogenicity of cell-like structures. Mapping plus focused ion beam milling combined with transmission electron microscopy data demonstrate that microfossil-like taxa, including species of Archaeoscillatoriopsis and Primaevifilum, are pseudofossils formed from vermiform phyllosilicate grains during hydrothermal alteration events. The 3.43-Ga Strelley Pool Formation shows that plausible early fossil candidates are turning up in unexpected environmental settings. Our data reveal how cellular clusters of unexpectedly large coccoids and tubular sheath-like envelopes were trapped between sand
grains and entombed within coatings of dripstone beach-rock silica cement. These fossils come from Earth’s earliest known intertidal to supratidal shoreline deposit, accumulated under aerated but oxygen poor conditions.
grains and entombed within coatings of dripstone beach-rock silica cement. These fossils come from Earth’s earliest known intertidal to supratidal shoreline deposit, accumulated under aerated but oxygen poor conditions.
Original language | English |
---|---|
Pages (from-to) | 4859-4864 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 112 |
Issue number | 16 |
Early online date | 21 Apr 2015 |
DOIs | |
Publication status | Published - Apr 2015 |
Keywords
- Early Life
- Microfossils
- Astrobiology
- Paleontology
- Biogeochemistry