Skip to content

Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts

Research output: Contribution to journalArticle

  • Ari V. Ahola-Olli
  • Linda Mustelin
  • Maria Kalimeri
  • Johannes Kettunen
  • Jari Jokelainen
  • Juha Auvinen
  • Katri Puukka
  • Aki S. Havulinna
  • Terho Lehtimäki
  • Mika Kähönen
  • Markus Juonala
  • Sirkka Keinänen-Kiukaanniemi
  • Veikko Salomaa
  • Markus Perola
  • Marjo Riitta Järvelin
  • Mika Ala-Korpela
  • Olli Raitakari
  • Peter Würtz
Original languageEnglish
Pages (from-to)2298-2309
Number of pages12
Issue number12
Early online date4 Oct 2019
DateAccepted/In press - 22 Jul 2019
DateE-pub ahead of print - 4 Oct 2019
DatePublished (current) - 1 Dec 2019


AIMS/HYPOTHESIS: Metabolomics technologies have identified numerous blood biomarkers for type 2 diabetes risk in case-control studies of middle-aged and older individuals. We aimed to validate existing and identify novel metabolic biomarkers predictive of future diabetes in large cohorts of young adults.

METHODS: NMR metabolomics was used to quantify 229 circulating metabolic measures in 11,896 individuals from four Finnish observational cohorts (baseline age 24-45 years). Associations between baseline metabolites and risk of developing diabetes during 8-15 years of follow-up (392 incident cases) were adjusted for sex, age, BMI and fasting glucose. Prospective metabolite associations were also tested with fasting glucose, 2 h glucose and HOMA-IR at follow-up.

RESULTS: Out of 229 metabolic measures, 113 were associated with incident type 2 diabetes in meta-analysis of the four cohorts (ORs per 1 SD: 0.59-1.50; p< 0.0009). Among the strongest biomarkers of diabetes risk were branched-chain and aromatic amino acids (OR 1.31-1.33) and triacylglycerol within VLDL particles (OR 1.33-1.50), as well as linoleic n-6 fatty acid (OR 0.75) and non-esterified cholesterol in large HDL particles (OR 0.59). The metabolic biomarkers were more strongly associated with deterioration in post-load glucose and insulin resistance than with future fasting hyperglycaemia. A multi-metabolite score comprised of phenylalanine, non-esterified cholesterol in large HDL and the ratio of cholesteryl ester to total lipid in large VLDL was associated with future diabetes risk (OR 10.1 comparing individuals in upper vs lower fifth of the multi-metabolite score) in one of the cohorts (mean age 31 years).

CONCLUSIONS/INTERPRETATION: Metabolic biomarkers across multiple molecular pathways are already predictive of the long-term risk of diabetes in young adults. Comprehensive metabolic profiling may help to target preventive interventions for young asymptomatic individuals at increased risk.

    Research areas

  • Branched-chain amino acid, Isoleucine, Leucine, Metabolomics, Type 2 diabetes

Download statistics

No data available



  • AFull-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via Springer Nature at Please refer to any applicable terms of use of the publisher.

    Final published version, 858 KB, PDF document

    Licence: CC BY


View research connections

Related faculties, schools or groups