TY - JOUR
T1 - Clearance and toxicity of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHu GDNF) following acute convection-enhanced delivery into the striatum
AU - Taylor, Hannah
AU - Barua, Neil
AU - Bienemann, Alison
AU - Wyatt, Marcella
AU - Castrique, Emma
AU - Foster, Rebecca
AU - Luz, Matthias
AU - Fibiger, Christian
AU - Mohr, Erich
AU - Gill, Steven
PY - 2013
Y1 - 2013
N2 - BACKGROUND: Despite promising early results, clinical trials involving the continuous delivery of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF) into the putamen for the treatment of Parkinson's disease have shown evidence of poor distribution and toxicity due to point-source accumulation. Convection-enhanced delivery (CED) has the potential to facilitate more widespread and clinically effective drug distribution.AIMS: We investigated acute CED of r-metHuGDNF into the striatum of normal rats in order to assess tissue clearance, toxicity (neuron loss, gliosis, microglial activation, and decreases in synaptophysin), synaptogenesis and neurite-outgrowth. We investigated a range of clinically relevant infused concentrations (0.1, 0.2, 0.6 and 1.0 µg/µL) and time points (2 and 4 weeks) in order to rationalise a dosing regimen suitable for clinical translation.RESULTS: Two weeks after single dose CED, r-metHuGDNF was below the limit of detection by ELISA but detectable by immunohistochemistry when infused at low concentrations (0.1 and 0.2 µg/µL). At these concentrations, there was no associated neuronal loss (neuronal nuclei, NeuN, immunohistochemistry) or synaptic toxicity (synaptophysin ELISA). CED at an infused concentration of 0.2 µg/µL was associated with a significant increase in synaptogenesis (p<0.01). In contrast, high concentrations of r-metHuGDNF (above 0.6 µg/µL) were associated with neuronal and synaptic toxicity (p<0.01). Markers for gliosis (glial fibrillary acidic protein, GFAP) and microglia (ionized calcium-binding adapter molecule 1, Iba1) were restricted to the needle track and the presence of microglia had diminished by 4 weeks post-infusion. No change in neurite outgrowth (Growth associated protein 43, GAP43, mRNA) compared to artificial cerebral spinal fluid (aCSF) control was observed with any infused concentration.CONCLUSION: The results of this study suggest that acute CED of low concentrations of GDNF, with dosing intervals determined by tissue clearance, has most potential for effective clinical translation by optimising distribution and minimising the risk of toxic accumulation.
AB - BACKGROUND: Despite promising early results, clinical trials involving the continuous delivery of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF) into the putamen for the treatment of Parkinson's disease have shown evidence of poor distribution and toxicity due to point-source accumulation. Convection-enhanced delivery (CED) has the potential to facilitate more widespread and clinically effective drug distribution.AIMS: We investigated acute CED of r-metHuGDNF into the striatum of normal rats in order to assess tissue clearance, toxicity (neuron loss, gliosis, microglial activation, and decreases in synaptophysin), synaptogenesis and neurite-outgrowth. We investigated a range of clinically relevant infused concentrations (0.1, 0.2, 0.6 and 1.0 µg/µL) and time points (2 and 4 weeks) in order to rationalise a dosing regimen suitable for clinical translation.RESULTS: Two weeks after single dose CED, r-metHuGDNF was below the limit of detection by ELISA but detectable by immunohistochemistry when infused at low concentrations (0.1 and 0.2 µg/µL). At these concentrations, there was no associated neuronal loss (neuronal nuclei, NeuN, immunohistochemistry) or synaptic toxicity (synaptophysin ELISA). CED at an infused concentration of 0.2 µg/µL was associated with a significant increase in synaptogenesis (p<0.01). In contrast, high concentrations of r-metHuGDNF (above 0.6 µg/µL) were associated with neuronal and synaptic toxicity (p<0.01). Markers for gliosis (glial fibrillary acidic protein, GFAP) and microglia (ionized calcium-binding adapter molecule 1, Iba1) were restricted to the needle track and the presence of microglia had diminished by 4 weeks post-infusion. No change in neurite outgrowth (Growth associated protein 43, GAP43, mRNA) compared to artificial cerebral spinal fluid (aCSF) control was observed with any infused concentration.CONCLUSION: The results of this study suggest that acute CED of low concentrations of GDNF, with dosing intervals determined by tissue clearance, has most potential for effective clinical translation by optimising distribution and minimising the risk of toxic accumulation.
KW - Animals
KW - Cell Death
KW - Corpus Striatum
KW - Glial Cell Line-Derived Neurotrophic Factor
KW - Humans
KW - Infusion Pumps
KW - Male
KW - Metabolic Clearance Rate
KW - Neurogenesis
KW - Neuroglia
KW - Parkinson Disease
KW - Rats
KW - Rats, Wistar
KW - Recombinant Proteins
KW - Tissue Distribution
U2 - 10.1371/journal.pone.0056186
DO - 10.1371/journal.pone.0056186
M3 - Article (Academic Journal)
C2 - 23526931
SN - 1932-6203
VL - 8
SP - e56186
JO - PLoS ONE
JF - PLoS ONE
IS - 3
ER -