Closed-loop antenna selection for wireless LANs with directional & omni-directional elements

D Kong, E Mellios, DE Halls, AR Nix, GS Hilton

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

8 Citations (Scopus)
607 Downloads (Pure)


Throughput and packet error rate are analysed in a home environment for two different 3×3 wireless LAN solutions. A 3×3 EBF approach (using three radio chains) is compared with a reduced cost 2×2 architecture (using two radio chains). In the 2×2 solution the optimum antenna pair is selected from the same set of three antennas at the AP and client. The impact of directional, as well as omni- directional, antenna elements is considered. The spatial and temporal characteristics of the in-home channels are modelled using 3D ray tracing and combined with appropriately orientated complex polarmetric patterns for each antenna element. Physical layer throughput is calculated for all modulation and coding schemes and (for the 2×2 case) all possible antenna combinations using a novel received bit mutual information rate abstraction technique. Results show that antenna number, pattern and orientation all play a key role in determining the performance of an 802.11n system. As expected, 3×3 EBF outperforms the 2×2 solution; however, with optimum antenna selection the performance of 2×2 EBF is competitive, especially when directional antennas are used at low signal to noise ratios. For distant rooms, 3×3 EBF is only 15% better (in terms of throughput) than 2×2 EBF when directional antennas and dynamic antenna selection are applied. 2×2 EBF with omni antennas results in a 45% reduction in throughput (compared with 3×3 EBF).
Translated title of the contributionClosed-loop antenna selection for Wireless LANs with directional & omni-directional elements
Original languageEnglish
Title of host publicationIEEE Vehicular Technology Conference (VTC Fall), 2011
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages1 - 5
Number of pages5
ISBN (Print)9781424483280
Publication statusPublished - 5 Sep 2011

Publication series

ISSN (Print)10903038

Bibliographical note

Rose publication type: Conference contribution

Additional information: With accompanying conference poster

Terms of use: Copyright © 2011 IEEE. Reprinted with permission, from D Kong, E Mellios, DE Halls, AR Nix, GS Hilton;Closed-loop antenna selection for wireless LANs with directional & omni-directional elements'; IEEE VTC Fall 2011.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Bristol's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.


  • 802.11n
  • MIMO
  • Eigen-beamforming
  • antenna switching

Fingerprint Dive into the research topics of 'Closed-loop antenna selection for wireless LANs with directional & omni-directional elements'. Together they form a unique fingerprint.

Cite this