Abstract
We investigate the growth of clusters within the mean field forest fire model of Ráth and Tóth. The model is a continuous-time Markov process, similar to the dynamical Erdös-Rényi random graph process but with the addition of so-called fires. A vertex may catch fire at any moment and, when it does so, causes all edges within its connected cluster to burn, meaning that they instantaneously disappear. Each burned edge may later reappear. We give a precise description of the process C_t of the size of the cluster of a tagged vertex, in the limit as the number of vertices in the model tends to infinity. We show that C_t is an explosive branching process with a time-inhomogeneous offspring distribution and instantaneous return to 1 on each explosion. Additionally, we show that the characteristic curves used to analyse the Smoluchowski-type coagulation equations associated to the model have a probabilistic interpretation in terms of the process Ct .
Original language | English |
---|---|
Article number | 101 |
Number of pages | 33 |
Journal | Electronic Journal of Probability |
Volume | 20 |
DOIs | |
Publication status | Published - 24 Sep 2015 |
Keywords
- Erdos-Renyi random graph
- forest fire
- self-organized criticality
- moluchowski coagulation equation
Fingerprint
Dive into the research topics of 'Cluster growth in the dynamical Erdös-Rényi process with forest fires'. Together they form a unique fingerprint.Profiles
-
Dr Edward T Crane
- School of Mathematics - Heilbronn Senior Research Fellow
- Probability, Analysis and Dynamics
- Heilbronn Institute for Mathematical Research
- Pure Mathematics
Person: Academic , Member