Coding of the contrasts in natural images by visual cortex (V1) neurons: a Bayesian approach

M Chirimuuta, PL Clatworthy, DJ Tolhurst

Research output: Contribution to journalArticle (Academic Journal)peer-review

21 Citations (Scopus)

Abstract

Individual V1 neurons respond dynamically over only limited ranges of stimulus contrasts, yet we can discriminate contrasts over a wide range. Different V1 neurons cover different parts of the contrast range, and the information they provide must be pooled somehow. We describe a probabilistic pooling model that shows that populations of neurons with contrast responses like those in cat and monkey V1 would most accurately code contrasts in the range actually found in natural scenes. The pooling equation is similar to Bayes's equation; however, explicit inclusion of prior probabilities in the inference increases coding accuracy only slightly.
Translated title of the contributionCoding of the contrasts in natural images by visual cortex (V1) neurons: a Bayesian approach
Original languageEnglish
Pages (from-to)1253 - 1260
JournalJournal of the Optical Society of America A
Volume20
DOIs
Publication statusPublished - 2003

Bibliographical note

Title of Publication Reviewed: Coding of the contrasts in natural images by visual cortex (V1) neurons: a Bayesian approach
Author of Publication Reviewed: Chirimuuta, M, Clatworthy, PL, Tolhurst, DJ

Fingerprint Dive into the research topics of 'Coding of the contrasts in natural images by visual cortex (V1) neurons: a Bayesian approach'. Together they form a unique fingerprint.

Cite this