TY - JOUR
T1 - Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
AU - International Inflammatory Bowel Disease Genetics Consortium (IIBDGC)
AU - Romagnoni, Alberto
AU - Jégou, Simon
AU - Van Steen, Kristel
AU - Wainrib, Gilles
AU - Hugot, Jean Pierre
AU - Peyrin-Biroulet, Laurent
AU - Chamaillard, Mathias
AU - Colombel, Jean Frederick
AU - Cottone, Mario
AU - D’Amato, Mauro
AU - D’Incà, Renata
AU - Halfvarson, Jonas
AU - Henderson, Paul
AU - Karban, Amir
AU - Kennedy, Nicholas A.
AU - Khan, Mohammed Azam
AU - Lémann, Marc
AU - Levine, Arie
AU - Massey, Dunecan
AU - Milla, Monica
AU - Ng, Sok Meng Evelyn
AU - Oikonomou, Ioannis
AU - Peeters, Harald
AU - Proctor, Deborah D.
AU - Rahier, Jean Francois
AU - Rutgeerts, Paul
AU - Seibold, Frank
AU - Stronati, Laura
AU - Taylor, Kirstin M.
AU - Törkvist, Leif
AU - Ublick, Kullak
AU - Van Limbergen, Johan
AU - Van Gossum, Andre
AU - Vatn, Morten H.
AU - Zhang, Hu
AU - Ahmad, Tariq
AU - Burton, John
AU - Evans, David M.
AU - Freathy, Rachel M.
AU - Hunt, Sarah
AU - McArdle, Wendy L.
AU - Ring, Susan M.
AU - Russell, Ellie
AU - Tobin, Martin D.
AU - Wain, Louise V.
AU - Zeggini, Eleftheria
AU - Burton, Paul R.
AU - Pembrey, Marcus
AU - Donnelly, Peter
PY - 2019/7/17
Y1 - 2019/7/17
N2 - Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers.
AB - Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers.
UR - http://www.scopus.com/inward/record.url?scp=85069470428&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-46649-z
DO - 10.1038/s41598-019-46649-z
M3 - Article (Academic Journal)
C2 - 31316157
AN - SCOPUS:85069470428
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 10351
ER -