Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy

M. Hücker, N. B. Christensen, A. T. Holmes, E. Blackburn, E. M. Forgan, Ruixing Liang, D. A. Bonn, W. N. Hardy, O. Gutowski, M. v. Zimmermann, Stephen M Hayden, J. Chang

Research output: Contribution to journalArticle (Academic Journal)peer-review

143 Citations (Scopus)
321 Downloads (Pure)

Abstract

To explore the doping dependence of the recently discovered charge-density-wave (CDW) order in YBa2Cu3Oy, we present a bulk-sensitive high-energy x-ray study for several oxygen concentrations, including strongly underdoped YBa2Cu3O6.44. Combined with previous data around the so-called 1/8 doping, we show that bulk CDW order exists at least for hole concentrations (p) in the CuO2 planes of 0.078≲p≲0.132. This implies that CDW order exists in close vicinity to the quantum critical point for spin-density-wave (SDW) order. In contrast to the pseudogap temperature T∗, the onset temperature of CDW order decreases with underdoping to TCDW∼90 K in YBa2Cu3O6.44. Together with a weakened order parameter this suggests a competition between CDW and SDW orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of competition with superconductivity as a function of temperature and magnetic field as samples closer to p=1/8. At low p the CDW incommensurability continues the previously reported linear increasing trend with underdoping. In the entire doping range the in-plane correlation length of the CDW order in b axis direction depends only very weakly on the hole concentration, and appears independent of the type and correlation length of the oxygen-chain order. The onset temperature of the CDW order is remarkably close to a temperature T† that marks the maximum of 1/(T1T) in planar Cu63 NQR/NMR experiments, potentially indicating a response of the spin dynamics to the formation of the CDW. Our discussion of these findings includes a detailed comparison to the charge stripe order in La2−xBaxCuO4.
Original languageEnglish
Article number054514
Number of pages11
JournalPhysical Review B: Condensed Matter and Materials Physics
Volume90
Issue number5
DOIs
Publication statusPublished - 1 Aug 2014

Fingerprint Dive into the research topics of 'Competing charge, spin, and superconducting orders in underdoped YBa<sub>2</sub>Cu<sub>3</sub>O<sub>y</sub>'. Together they form a unique fingerprint.

Cite this