Competitive Self-Assembly Kinetics as a Route to Controlling the Morphology of Core-Crystalline Cylindrical Micelles

Jiangping Xu, Hang Zhou, Qing Yu, Ian Manners, Mitchell Winnik

Research output: Contribution to journalArticle (Academic Journal)peer-review

34 Citations (Scopus)
247 Downloads (Pure)


Nucleated self-assembly in selective solvents of core-crystalline block copolymers (BCPs) is a special case of living supramolecular polymerization, leading to rod-like micelles of controlled and uniform length. For the crystallization-driven self-assembly of PFS-containing BCPs (PFS = polyferrocenyldimethylsilane), the formation of block comicelles by sequential addition of different BCPs is well established. But there are only a few examples of living copolymerization, the simultaneous addition of pairs of BCPs with different corona-forming chains. At present, relatively little is known about the competitive kinetics of different BCPs crystallizing on a common seed. Here we report a systematic study of competitive seeded growth kinetics of pairs of linear PFS-containing BCPs and show that one can manipulate the kinetics to control the morphology of the comicelles. We found that the seeded-growth kinetics of the individual BCP unimer dominates the co-assembly behavior and thus the morphology of the corona. Patchy comicelles with microphase-segregated corona chains are formed when the epitaxial growth rates of the two different BCPs on the common seed are similar. In contrast, factors that lead to dissimilar growth rates (long corona-forming blocks or introduction of charges on corona-forming chains) promote large-scale separation of the corona blocks, leading to block comicelles. Because the termini of the comicelles remain living, they can further direct the growth of unimers, resulting in hierarchical block comicelles with patchy blocks and single-component (homo) blocks. Furthermore, the patchy comicelles can be loaded with either gold or platinum nanoparticles, generating organic-inorganic hybrid materials with potential application in catalysis.
Original languageEnglish
Pages (from-to)2619-2628
Number of pages9
JournalJournal of the American Chemical Society
Early online date5 Feb 2018
Publication statusPublished - 21 Feb 2018

Fingerprint Dive into the research topics of 'Competitive Self-Assembly Kinetics as a Route to Controlling the Morphology of Core-Crystalline Cylindrical Micelles'. Together they form a unique fingerprint.

Cite this