TY - JOUR
T1 - Compressive fatigue characteristics of octet-truss lattices in different orientations
AU - Li, Yifan
AU - Pavier, Martyn J
AU - Coules, Harry
PY - 2021/9/16
Y1 - 2021/9/16
N2 - Octet-truss lattice materials have excellent potential for use as lightweight structures due to their high strength and stiffness, but low relative density. Octet-truss lattice specimens fabricated by stereolithography technique with a photopolymer resin were studied in this research. The unit cell orientation effects on the compressive fatigue behaviours of octet-truss lattices were studied using experimental analysis and computer simulation. A detailed comparison was made between the failure modes of static and fatigue failures, and the deformation mechanisms of lattices in different orientations under compressive cyclic load were determined. Both the static mechanical properties and fatigue properties of octet-truss lattices are highly dependent on the lattice orientation. When normalized with respect to their orientation-dependent Young’s moduli, the fatigue endurance of lattices in different orientations conforms very well (R2=0.88) to a single S-N curve described by a power law. Finally, the differences in fatigue performance between lattices in different orientations were explained and a simple compression–compression fatigue mechanism was determined.
AB - Octet-truss lattice materials have excellent potential for use as lightweight structures due to their high strength and stiffness, but low relative density. Octet-truss lattice specimens fabricated by stereolithography technique with a photopolymer resin were studied in this research. The unit cell orientation effects on the compressive fatigue behaviours of octet-truss lattices were studied using experimental analysis and computer simulation. A detailed comparison was made between the failure modes of static and fatigue failures, and the deformation mechanisms of lattices in different orientations under compressive cyclic load were determined. Both the static mechanical properties and fatigue properties of octet-truss lattices are highly dependent on the lattice orientation. When normalized with respect to their orientation-dependent Young’s moduli, the fatigue endurance of lattices in different orientations conforms very well (R2=0.88) to a single S-N curve described by a power law. Finally, the differences in fatigue performance between lattices in different orientations were explained and a simple compression–compression fatigue mechanism was determined.
U2 - 10.1080/15376494.2021.1978020
DO - 10.1080/15376494.2021.1978020
M3 - Article (Academic Journal)
SN - 1537-6494
JO - Mechanics of Advanced Materials and Structures
JF - Mechanics of Advanced Materials and Structures
ER -