Abstract
This article proposes a framework which allows the study of stability robustness of equilibria of a nonlinear system in the face of parametric uncertainties from the point of view of bifurcation theory. In this context, a branch of equilibria is stable if bifurcations (i.e., qualitative changes of the steady-state solutions) do not occur as one or more bifurcation parameters are varied. The work focuses specifically on Hopf bifurcations, where a stable branch of equilibria meets a branch of periodic solutions. It is of practical interest to evaluate how the presence of uncertain parameters in the system alters the result of analyses performed with respect to a nominal vector field. Note that in this article bifurcation parameters have a different meaning than uncertain parameters. To answer the question, the concept of robust bifurcation margins is proposed based on the idea of describing the uncertain system in a Linear Fractional Transformation fashion. The robust bifurcation margins can be interpreted as nonlinear analogues of the structural singular value, or $\mu$, which provides robust stability margins for linear time invariant systems. Their computation is formulated as a nonlinear program aided by a continuation-based multistart strategy to mitigate the issue of local minima. Application of the framework is demonstrated on two case studies from the power system and aerospace literature.
Original language | English |
---|---|
Pages (from-to) | 1956-1992 |
Journal | SIAM Journal on Applied Dynamical Systems |
Volume | 19 |
Issue number | 3 |
Early online date | 25 Aug 2020 |
DOIs | |
Publication status | E-pub ahead of print - 25 Aug 2020 |
Keywords
- bifurcations
- numerical continuation
- robust control theory
- robust stability