TY - JOUR
T1 - Conformational isomers of trans-urocanic acid observed by rotational spectroscopy
AU - Cooper, Graham
AU - Medcraft, Chris
AU - Gougoula, Eva
AU - Walker, Nicholas
PY - 2019/4/12
Y1 - 2019/4/12
N2 - Rotational spectra have been measured and assigned for four conformers of trans-urocanic acid. The acid was transferred into the gas phase through laser vaporisation of a solid sample, mixed with a neon buffer gas and then cooled through supersonic expansion. Molecules and complexes in the expanding gas jet were probed through chirped-pulse, Fourier transform microwave spectroscopy between 2.0 and 18.5 GHz. Rotational constants, A0, B0 and C0; centrifugal distortion constants, ΔJ and ΔJK; and nuclear quadrupole coupling constants of the nitrogen atoms, χaa(N) and χbb(N)–χcc(N), were determined for the various conformers. Data were obtained for ten isotopologues of the conformer that was observed to yield the spectrum of highest intensity. Substitution (rs) coordinates were determined for all carbon atoms and two hydrogen atoms of this conformer. Other observed spectra were assigned to conformers on the basis of excellent agreement between calculated and experimentally-determined rotational constants, and empirical observations of the relative intensities of a- and b-type transitions. The results of DFT calculations imply high barriers to the interconversion of assigned conformers.
AB - Rotational spectra have been measured and assigned for four conformers of trans-urocanic acid. The acid was transferred into the gas phase through laser vaporisation of a solid sample, mixed with a neon buffer gas and then cooled through supersonic expansion. Molecules and complexes in the expanding gas jet were probed through chirped-pulse, Fourier transform microwave spectroscopy between 2.0 and 18.5 GHz. Rotational constants, A0, B0 and C0; centrifugal distortion constants, ΔJ and ΔJK; and nuclear quadrupole coupling constants of the nitrogen atoms, χaa(N) and χbb(N)–χcc(N), were determined for the various conformers. Data were obtained for ten isotopologues of the conformer that was observed to yield the spectrum of highest intensity. Substitution (rs) coordinates were determined for all carbon atoms and two hydrogen atoms of this conformer. Other observed spectra were assigned to conformers on the basis of excellent agreement between calculated and experimentally-determined rotational constants, and empirical observations of the relative intensities of a- and b-type transitions. The results of DFT calculations imply high barriers to the interconversion of assigned conformers.
UR - http://www.scopus.com/inward/record.url?scp=85065627299&partnerID=8YFLogxK
U2 - 10.1039/C9CP00651F
DO - 10.1039/C9CP00651F
M3 - Article (Academic Journal)
SN - 1463-9076
VL - 21
SP - 9495
EP - 9503
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 18
ER -