Constraints on Earth system functioning at the Paleocene-Eocene Thermal Maximum from the marine silicon cycle

Guillaume Fontorbe*, Patrick Frings, Christina De La Rocha, Katharine Hendry, Daniel Conley

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)

32 Downloads (Pure)

Abstract

The Paleocene-Eocene Thermal Maximum (PETM, ca. 56 Ma) is marked by a negative carbon isotope excursion (CIE) and increased global temperatures. The CIE is thought to result from the release of 13C-depleted carbon, although the source(s) of carbon and triggers for its release, its rate of release, and the mechanisms by which the Earth system recovered are all debated. Many of the proposed mechanisms for the onset and recovery phases of the PETM make testable predictions about the marine silica cycle, making silicon isotope records a promising tool to address open questions about the PETM. We analyzed silicon isotope ratios (δ30Si) in radiolarian tests and sponge spicules from the Western North Atlantic (ODP Site 1051) across the PETM. Radiolarian δ30Si decreases by 0.6‰ from a background of 1‰ coeval with the CIE, while sponge δ30Si remains consistent at 0.2‰. Using a box-model to test the Si cycle response to various scenarios, we find the data are best explained by a weak silicate weathering feedback, implying the recovery was mostly driven by non-diatom organic carbon burial, the other major long-term carbon sink. We find no resolvable evidence for a volcanic trigger for carbon release, or for a change in regional oceanography. Better understanding of radiolarian Si isotope fractionation and more Si isotope records spanning the PETM are needed to confirm the global validity of these conclusions, but they highlight how the coupling between the silica and carbon cycles can be exploited to yield insight into the functioning of the Earth System.
Original languageEnglish
Article numbere2020PA003873
Number of pages22
JournalPaleoceanography and Paleoclimatology
Volume35
Issue number5
Early online date20 Mar 2020
DOIs
Publication statusPublished - 1 May 2020

Fingerprint Dive into the research topics of 'Constraints on Earth system functioning at the Paleocene-Eocene Thermal Maximum from the marine silicon cycle'. Together they form a unique fingerprint.

  • Cite this