TY - GEN
T1 - Constructing synthetic-protein assemblies from de novo designed 310 helices
AU - Kumar, Prasun
AU - Paterson, Neil G.
AU - Clayden, Jonathan
AU - Woolfson, Derek N.
PY - 2021/12/11
Y1 - 2021/12/11
N2 - Compared with the iconic α helix, 310 helices occur much less frequently in protein structures. The different 310-helical parameters lead to energetically less favourable internal energies, and a reduced tendency to pack into defined higher-order structures. Consequently, in natural proteins, 310 helices rarely extend past 6 residues, and do not form regular supersecondary, tertiary, or quaternary interactions. Here, we show that despite their absence in nature, synthetic protein-like assemblies can be built from 310 helices. We report the rational design, solution-phase characterisation, and an X-ray crystal structure for water-soluble bundles of 310 helices with consolidated hydrophobic cores. The design uses 6-residue repeats informed by analysing natural 310 helices, and incorporates aminoisobutyric acid residues. Design iterations reveal a tipping point between α-helical and 310-helical folding, and identify features required for stabilising assemblies in this unexplored region of protein-structure space.
AB - Compared with the iconic α helix, 310 helices occur much less frequently in protein structures. The different 310-helical parameters lead to energetically less favourable internal energies, and a reduced tendency to pack into defined higher-order structures. Consequently, in natural proteins, 310 helices rarely extend past 6 residues, and do not form regular supersecondary, tertiary, or quaternary interactions. Here, we show that despite their absence in nature, synthetic protein-like assemblies can be built from 310 helices. We report the rational design, solution-phase characterisation, and an X-ray crystal structure for water-soluble bundles of 310 helices with consolidated hydrophobic cores. The design uses 6-residue repeats informed by analysing natural 310 helices, and incorporates aminoisobutyric acid residues. Design iterations reveal a tipping point between α-helical and 310-helical folding, and identify features required for stabilising assemblies in this unexplored region of protein-structure space.
U2 - 10.1101/2021.12.11.471898
DO - 10.1101/2021.12.11.471898
M3 - Other contribution
T3 - bioRxiv
ER -