Contribution of energetically reactive surface features to the dissolution of CeO2 and ThO2 analogues for spent nuclear fuel microstructures

Claire L. Corkhill*, Emmi Myllykylä, Daniel J. Bailey, Stephanie M. Thornber, Jiahui Qi, Pablo Maldonado, Martin C. Stennett, Andrea Hamilton, Neil C. Hyatt

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

35 Citations (Scopus)

Abstract

In the safety case for the geological disposal of nuclear waste, the release of radioactivity from the repository is controlled by the dissolution of the spent fuel in groundwater. There remain several uncertainties associated with understanding spent fuel dissolution, including the contribution of energetically reactive surface sites to the dissolution rate. In this study, we investigate how surface features influence the dissolution rate of synthetic CeO2 and ThO2, spent nuclear fuel analogues that approximate as closely as possible the microstructure characteristics of fuel-grade UO2 but are not sensitive to changes in oxidation state of the cation. The morphology of grain boundaries (natural features) and surface facets (specimen preparation-induced features) was investigated during dissolution. The effects of surface polishing on dissolution rate were also investigated. We show that preferential dissolution occurs at grain boundaries, resulting in grain boundary decohesion and enhanced dissolution rates. A strong crystallographic control was exerted, with high misorientation angle grain boundaries retreating more rapidly than those with low misorientation angles, which may be due to the accommodation of defects in the grain boundary structure. The data from these simplified analogue systems support the hypothesis that grain boundaries play a role in the so-called "instant release fraction" of spent fuel, and should be carefully considered, in conjunction with other chemical effects, in safety performance assessements for the geological disposal of spent fuel. Surface facets formed during the sample annealing process also exhibited a strong crystallographic control and were found to dissolve rapidly on initial contact with dissolution medium. Defects and strain induced during sample polishing caused an overestimation of the dissolution rate, by up to 3 orders of magnitude.

Original languageEnglish
Pages (from-to)12279-12289
Number of pages11
JournalACS Applied Materials and Interfaces
Volume6
Issue number15
DOIs
Publication statusPublished - 13 Aug 2014

Keywords

  • atomic force microscopy
  • dissolution
  • faceting
  • grain boundaries
  • nuclear fuel
  • surface

Fingerprint

Dive into the research topics of 'Contribution of energetically reactive surface features to the dissolution of CeO2 and ThO2 analogues for spent nuclear fuel microstructures'. Together they form a unique fingerprint.

Cite this