Abstract
Analysis of tension responses to ramp length changes in muscle can provide important information about the crossbridge cycle. During a ramp length change, the force response of an active muscle shows an early change in slope (the P₁ transition) followed by a later, gradual change in slope (the P₂ transition). Modeling shows that the first transition reflects the tension change associated with the crossbridge power stroke in shortening and with its reversal in lengthening; the reduction in slope at the second transition occurs when most of the crossbridges (myosin heads) that were attached at the start of the ramp become detached; the steady tension during shortening is borne mainly by post-stroke heads whereas tension during lengthening is borne mostly by pre-stroke heads. After the P₂ transition, the tension reaches a steady level in the model whereas in the experiments the tension continues to increase during lengthening or to decrease during shortening; this tension change is seen at a wide range of sarcomere lengths and even when active force is reduced by a myosin inhibitor. It appears that some non-crossbridge components in muscle fibers stiffen upon activation and contribute to the continued tension rise during lengthening; release of such tension leads to tension decline during shortening. Thus, non-crossbridge visco-elasticity in sarcomeres may also contribute to energy storage and release during in situ muscle function.
Translated title of the contribution | Crossbridge and non-crossbridge contributions to force in shortening and lengthening muscle |
---|---|
Original language | English |
Pages (from-to) | 207 - 221 |
Number of pages | 14 |
Journal | Advances in Experimental Medicine and Biology |
Volume | 682 |
DOIs | |
Publication status | Published - 2010 |