Abstract
Crosstalk between the actin and microtubule cytoskeletons is essential for many cellular processes. Recent studies have shown that microtubules and F-actin can assemble to form a composite structure where F-actin occupies the microtubule lumen. Whether these cytoskeletal hybrids exist in physiological settings and how they are formed is unclear. Here, we show that the short-crossover Class I actin filament previously identified inside microtubules in human HAP1 cells is cofilin-bound F-actin. Lumenal F-actin can be reconstituted in vitro, but cofilin is not essential. Moreover, actin filaments with both cofilin-bound and canonical morphologies reside within human platelet microtubules under physiological conditions. We propose that stress placed upon the microtubule network during motor-driven microtubule looping and sliding may facilitate the incorporation of actin into microtubules.
Original language | English |
---|---|
Article number | 5967 |
Number of pages | 8 |
Journal | Nature Communications |
Volume | 15 |
Issue number | 1 |
DOIs | |
Publication status | Published - 16 Jul 2024 |
Bibliographical note
Publisher Copyright:© The Author(s) 2024.
Fingerprint
Dive into the research topics of 'CryoET reveals actin filaments within platelet microtubules'. Together they form a unique fingerprint.Equipment
-
HPC (High Performance Computing) and HTC (High Throughput Computing) Facilities
Alam, S. R. (Manager), Eccleston, P. E. (Other), Williams, D. A. G. (Manager) & Atack, S. H. (Other)
Facility/equipment: Facility
-
Research Data Storage Facility (RDSF)
Alam, S. R. (Manager), Williams, D. A. G. (Manager) & Eccleston, P. E. (Manager)
IT ServicesFacility/equipment: Facility