Crystal and Electronic Structure of Bismuth Thiophosphate, BiPS4: An Earth Abundant Solar Absorber

Devendra Tiwari, Dominic R Alibhai, David Cherns, David J Fermin

Research output: Contribution to journalArticle (Academic Journal)peer-review

92 Downloads (Pure)

Abstract

The optoelectronic properties of crystalline BiPS4 have been described for the first time for solar energy conversion. Detailed structural analysis is extracted from XRD refinement of powders synthesized by the solid-state method. BiPS4 exhibits a rather unusual 3-dimensional orthorhombic structure with two distinctive Bi sites with octahedral coordination distorted by 6s2 lone pairs. High-resolution TEM imaging clearly shows the two Bi–Bi interatomic distances in close agreement with the XRD analysis. BiPS4 displays a complex Raman spectrum under near-resonant conditions which is rationalized by density functional perturbation theory. Hybrid-functional-DFT calculations show significant spin–orbit coupling effects in Bi 6p bands, not only affecting the band dispersion but also lowering the conduction band minimum by approximately 0.5 eV. The optical properties of BiPS4 powders are dominated by a direct transition at 1.72 eV, closely matching the calculated band gap. Electrochemical experiments revealed n-type conductivity with a flat band potential located at 0.16 V vs RHE. We also show a remarkable agreement between the position of the band edges estimated from first-principles calculations and electrochemical measurements. The time-resolved photoluminescence transient revealed a carrier lifetime of approximately 1 ns, manifesting as strong potential- and wavelength-dependent photocurrent responses. Finally, the nature of the structural defects responsible for the relatively short lifetime is briefly discussed.
Original languageEnglish
Pages (from-to)1235-1242
Number of pages8
JournalChemistry of Materials
Volume32
Issue number3
Early online date22 Jan 2020
DOIs
Publication statusPublished - 11 Feb 2020

Fingerprint

Dive into the research topics of 'Crystal and Electronic Structure of Bismuth Thiophosphate, BiPS4: An Earth Abundant Solar Absorber'. Together they form a unique fingerprint.

Cite this