Curses, Tradeoffs, and Scalable Management: Advancing Evolutionary Multiobjective Direct Policy Search to Improve Water Reservoir Operations

Matteo Giuliani, Andrea Castelletti, Francesca Pianosi, Emanuele Mason, Patrick Reed

Research output: Contribution to journalArticle (Academic Journal)peer-review

115 Citations (Scopus)
693 Downloads (Pure)

Abstract

Optimal management policies for water reservoir operation are generally designed via stochastic dynamic programming (SDP). Yet, the adoption of SDP in complex real-world problems is challenged by the three curses of dimensionality, modeling, and multiple objectives. These three curses considerably limit SDP’s practical application. Alternatively, this study focuses on the use of evolutionary multiobjective direct policy search (EMODPS), a simulation-based optimization approach that combines direct policy search, nonlinear approximating networks, and multiobjective evolutionary algorithms to design Pareto-approximate closed-loop operating policies for multipurpose water reservoirs. This analysis explores the technical and practical implications of using EMODPS through a careful diagnostic assessment of the effectiveness and reliability of the overall EMODPS solution design as well as of the resulting Pareto-approximate operating policies. The EMODPS approach is evaluated using the multipurpose Hoa Binh water reservoir in Vietnam, where water operators are seeking to balance the conflicting objectives of maximizing hydropower production and minimizing flood risks. A key choice in the EMODPS approach is the selection of alternative formulations for flexibly representing reservoir operating policies. This study distinguishes between the relative performance of two widely-used nonlinear approximating networks, namely artificial neural networks (ANNs) and radial basis functions (RBFs). The results show that RBF solutions are more effective than ANN ones in designing Pareto approximate policies for the Hoa Binh reservoir. Given the approximate nature of EMODPS, the diagnostic benchmarking uses SDP to evaluate the overall quality of the attained Pareto-approximate results. Although the Hoa Binh test case’s relative simplicity should maximize the potential value of SDP, the results demonstrate that EMODPS successfully dominates the solutions derived via SDP.
Original languageEnglish
Article number04015050
Number of pages17
JournalJournal of Water Resources Planning and Management
Volume142
Issue number2
Early online date13 Aug 2015
DOIs
Publication statusPublished - Feb 2016

Keywords

  • Water management
  • Direct policy search
  • Multiobjective evolutionary algorithm

Fingerprint

Dive into the research topics of 'Curses, Tradeoffs, and Scalable Management: Advancing Evolutionary Multiobjective Direct Policy Search to Improve Water Reservoir Operations'. Together they form a unique fingerprint.

Cite this