Cytoplasmic TAF2-TAF8-TAF10 complex provides evidence for nuclear holo-TFIID assembly from preformed submodules

Simon Trowitzsch, Cristina Viola, Elisabeth Scheer, Sascha Conic, Virginie Chavant, Marjorie Fournier, Gabor Papai, Ima-Obong Ebong, Christiane Schaffitzel, Juan Zou, Matthias Haffke, Juri Rappsilber, Carol V. Robinson, Patrick Schultz, Laszlo Tora, Imre Berger

Research output: Contribution to journalArticle (Academic Journal)peer-review

73 Citations (Scopus)
412 Downloads (Pure)

Abstract

General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID-a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)-assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8-TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core-TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo-TFIID, regulated by nuclear import of preformed cytoplasmic submodules.
Original languageEnglish
Article number6011
Number of pages14
JournalNature Communications
Volume6
DOIs
Publication statusPublished - 14 Jan 2015

Fingerprint

Dive into the research topics of 'Cytoplasmic TAF2-TAF8-TAF10 complex provides evidence for nuclear holo-TFIID assembly from preformed submodules'. Together they form a unique fingerprint.

Cite this