Data-driven generation of spatio-temporal routines in human mobility

Filippo Simini, Luca Pappalardo*

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

45 Citations (Scopus)
305 Downloads (Pure)


The generation of realistic spatio-temporal trajectories of human mobility is of fundamental importance in a wide range of applications, such as the developing of protocols for mobile ad-hoc networks or what-if analysis in urban ecosystems. Current generative algorithms fail in accurately reproducing the individuals’ recurrent schedules and at the same time in accounting for the possibility that individuals may break the routine during periods of variable duration. In this article we present Ditras (DIary-based TRAjectory Simulator), a framework to simulate the spatio-temporal patterns of human mobility. Ditras operates in two steps: the generation of a mobility diary and the translation of the mobility diary into a mobility trajectory. We propose a data-driven algorithm which constructs a diary generator from real data, capturing the tendency of individuals to follow or break their routine. We also propose a trajectory generator based on the concept of preferential exploration and preferential return. We instantiate Ditras with the proposed diary and trajectory generators and compare the resulting algorithm with real data and synthetic data produced by other generative algorithms, built by instantiating Ditras with several combinations of diary and trajectory generators. We show that the proposed algorithm reproduces the statistical properties of real trajectories in the most accurate way, making a step forward the understanding of the origin of the spatio-temporal patterns of human mobility.
Original languageEnglish
Pages (from-to)787–829
Number of pages43
JournalData Mining and Knowledge Discovery
Early online date27 Dec 2017
Publication statusPublished - 27 Dec 2017


  • Big data
  • Complex systems
  • Data science
  • GPS data
  • Human dynamics
  • Human mobility
  • Mathematical modelling
  • Mobile phone data
  • Smart cities
  • Spatiotemporal data
  • Urban dynamics


Dive into the research topics of 'Data-driven generation of spatio-temporal routines in human mobility'. Together they form a unique fingerprint.

Cite this