Desiccation time during drought is highly predictable across species of Eucalyptus from contrasting climates

Chris J. Blackman*, Ximeng Li, Brendan Choat, Paul D. Rymer, Martin G. De Kauwe, Remko A. Duursma, David T. Tissue, Belinda E. Medlyn

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

14 Citations (Scopus)

Abstract

Catastrophic failure of the water transport pathway in trees is a principal mechanism of mortality during extreme drought. To be able to predict the probability of mortality at an individual and landscape scale we need knowledge of the time for plants to reach critical levels of hydraulic failure. We grew plants of eight species of Eucalyptus originating from contrasting climates before allowing a subset to dehydrate. We tested whether a trait-based model of time to plant desiccation tcrit, from stomatal closure gs90 to a critical level of hydraulic dysfunction Ψcrit is consistent with observed dry-down times. Plant desiccation time varied among species, ranging from 96.2 to 332 h at a vapour-pressure deficit of 1 kPa, and was highly predictable using the tcrit model in conjunction with a leaf shedding function. Plant desiccation time was longest in species with high cavitation resistance, strong vulnerability segmentation, wide stomatal-hydraulic safety, and a high ratio of total plant water content to leaf area. Knowledge of tcrit in combination with water-use traits that influence stomatal closure could significantly increase our ability to predict the timing of drought-induced mortality at tree and forest scales.

Original languageEnglish
Pages (from-to)632-643
Number of pages12
JournalNew Phytologist
Volume224
Issue number2
DOIs
Publication statusPublished - 1 Oct 2019

Bibliographical note

Funding Information:
We gratefully thank Renee Smith, Chelsea Maier, and Noni Gander for assisting with data collection, as well as Andrew Gherlenda for assisting with growth facility maintenance. This research was funded by an ARC Linkage grant (LP140100232) with the NSW Office of Environment and Heritage, Science and Industry Endowment Fund (SIEF grant RP04-122), and an ARC Future Fellowship (FT130101115).

Publisher Copyright:
© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust

Keywords

  • drought
  • eucalyptus
  • g
  • hydraulic failure
  • plant desiccation time
  • relative water content
  • stomatal closure

Fingerprint

Dive into the research topics of 'Desiccation time during drought is highly predictable across species of Eucalyptus from contrasting climates'. Together they form a unique fingerprint.

Cite this