Abstract
One of the scientific satellite programmes of Rome University “La Sapienza”, called DeSat, is here reported, with major emphasis on the mechanical and structure subsystems. The principal payload of the entire system is represented by a titanium recirculating ball screw boom whose mass reaches one third of the total mass budget. The goal of the mission is to space qualify a new micro-satellite multipurpose platform, called LEO-MicroBAR, and to qualify the titanium linear actuator. Both the two systems have been developed by the Aerospace and Astronautics Engineering Department (AAED). The boom will be used to investigate the validity of its design for space applications, like precise off platform positioning of devices and instruments, GPS interferometry, sensor measurements and robotics. It will be shielded against space interactions by a titanium bellow system whose main functions will be impact protection, antirotation, boom passive thermal control. The satellite geometry, when the boom is in deployed configuration, is highly stretched and the name “deployable satellite” was natural. The large deployment mechanism, compared to the small bus, has influenced the design of every satellite subsystem leading to innovative solutions in terms of design, materials, equipment and instruments.
Translated title of the contribution | Design of small deployable satellite |
---|---|
Original language | English |
Pages (from-to) | 533 - 540 |
Number of pages | 8 |
Journal | Acta Astronautica |
Volume | 53 (4-10) |
Publication status | Published - Aug 2004 |