Detecting Carried Objects from Sequences of Walking Pedestrians

Dima Damen, David Hogg

Research output: Contribution to journalArticle (Academic Journal)peer-review

24 Citations (Scopus)


This paper proposes a method for detecting objects carried by pedestrians, such as backpacks and suitcases, from video sequences. In common with earlier work [14], [16] on the same problem, the method produces a representation of motion and shape (known as a temporal template) that has some immunity to noise in foreground segmentations and phase of the walking cycle. Our key novelty is for carried objects to be revealed by comparing the temporal templates against view-specific exemplars generated offline for unencumbered pedestrians. A likelihood map of protrusions, obtained from this match, is combined in a Markov random field for spatial continuity, from which we obtain a segmentation of carried objects using the MAP solution. We also compare the previously used method of periodicity analysis to distinguish carried objects from other protrusions with using prior probabilities for carried-object locations relative to the silhouette. We have reimplemented the earlier state-of-the-art method [14] and demonstrate a substantial improvement in performance for the new method on the PETS2006 data set. The carried-object detector is also tested on another outdoor data set. Although developed for a specific problem, the method could be applied to the detection of irregularities in appearance for other categories of object that move in a periodic fashion.
Original languageEnglish
Pages (from-to)1056-1067
Number of pages11
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Issue number6
Publication statusPublished - Jun 2012


  • Baggage detection, carried-objects detection, silhouette analysis, temporal templates, template matching, periodicity analysis

Fingerprint Dive into the research topics of 'Detecting Carried Objects from Sequences of Walking Pedestrians'. Together they form a unique fingerprint.

Cite this