Abstract
We present a demonstration of a newly developed text stream event detection method on over a million articles from the New York Times corpus. The event detection is designed to operate in a predominantly on-line fashion, reporting new events within a specified timeframe. The event detection is achieved by detecting significant changes in the statistical properties of the text where those properties are efficiently stored and updated in a suffix tree. This particular demonstration shows how our method is effective at discovering both short- and long-term events (which are often denoted topics), and how it automatically copes with topic drift on a corpus of 1035263 articles.
Translated title of the contribution | Detecting events in a million New York Times articles |
---|---|
Original language | English |
Title of host publication | Machine Learning and Knowledge Discovery in Databases (ECML/PKDD) |
Publisher | Springer |
Publication status | Published - Oct 2010 |
Bibliographical note
Other page information: 615-618Conference Proceedings/Title of Journal: Machine Learning and Knowledge Discovery in Databases (ECML/PKDD)
Other identifier: 2001246