Detection of Propadiene on Titan

NA Lombardo, CA Nixon, TK Greathouse, B Bezard, A Jolly, S Vinatier, Nick Teanby, MJ Richter, PGJ Irwin, A Coustenis, FM Flasar

Research output: Contribution to journalArticle (Academic Journal)peer-review

21 Citations (Scopus)
163 Downloads (Pure)


The atmosphere of Titan, the largest moon of Saturn, is rich in organic molecules, and it has been suggested that the moon may serve as an analog for the pre-biotic Earth due to its highly reducing chemistry and existence of global hazes. Photochemical models of Titan have predicted the presence of propadiene (historically referred to as allene), CH2CCH2, an isomer of the well-measured propyne (also called methylacetylene) CH3CCH, but its detection has remained elusive due to insufficient spectroscopic knowledge of the molecule. This has recently been remedied with an updated spectral line list. Here we present the first unambiguous detection of the molecule in any astronomical object, observed with the Texas Echelle Cross Echelle Spectrograph on the NASA Infrared Telescope Facility in 2017 July. We model its emission line near 12 μm and measure a volume mixing ratio of (6.9 ± 0.8) × 10−10 at 175 km, assuming a vertically increasing abundance profile as predicted in photochemical models. Cassini measurements of propyne made during 2017 April indicate that the abundance ratio of propyne to propadiene is 8.2 ± 1.1 at the same altitude. This initial measurement of the molecule in Titan's stratosphere paves the way toward constraining the amount of atomic hydrogen available on Titan, as well as future mapping of propadiene on Titan from 8 m and larger ground-based observatories, and future detection on other planetary bodies.
Original languageEnglish
Article numberL33
Number of pages6
JournalAstrophysical Journal Letters
Publication statusPublished - 20 Aug 2019


  • Saturnian satellites
  • Planetary atmospheres
  • Pre-biotic astrochemistry
  • Planetary science


Dive into the research topics of 'Detection of Propadiene on Titan'. Together they form a unique fingerprint.

Cite this