Skip to content

Determining the Core Radio Luminosity Function of Radio AGNs via Copula

Research output: Contribution to journalArticle

Original languageEnglish
Article number33
Number of pages17
JournalAstrophysical Journal Supplement Series
Issue number2
Early online date18 Dec 2018
DateAccepted/In press - 27 Oct 2018
DateE-pub ahead of print - 18 Dec 2018
DatePublished (current) - Dec 2018


The radio luminosity functions (RLFs) of active galactic nuclei (AGNs) are traditionally measured based on total emission, which doesn't reflect the current activity of the central black hole. The increasing interest in compact radio cores of AGNs requires determination of the RLF based on core emission (i.e., core RLF). In this work we have established a large sample (totaling 1207) of radio-loud AGNs, mainly consisting of radio galaxies (RGs) and steep-spectrum radio quasars (SSRQs). Based on the sample, we explore the relationship between core luminosity (Lc) and total luminosity (Lt) via a powerful statistical tool called "Copula". The conditional probability distribution p(logLc∣logLt) is obtained. We derive the core RLF as a convolution of p(logLc∣logLt) with the total RLF which was determined by previous work. We relate the separate RG and SSRQ core RLFs via a relativistic beaming model and find that SSRQs have an average Lorentz factor of γ=9.84+3.61−2.50, and that most are seen within 8∘≲θ≲45∘ of the jet axis. Compared with the total RLF which is mainly contributed by extended emission, the core RLF shows a very weak luminosity-dependent evolution, with the number density peaking around z∼0.8 for all luminosities. Differences between core and total RLFs can be explained in a framework involving a combination of density and luminosity evolutions where the cores have significantly weaker luminosity evolution than the extended emission.

    Research areas

  • galaxies: active, galaxies: luminosity function, mass function, radio continuum: galaxies

Download statistics

No data available



  • Full-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via IOP at . Please refer to any applicable terms of use of the publisher.

    Final published version, 2.54 MB, PDF document

    Licence: CC BY-NC-ND


View research connections

Related faculties, schools or groups