Development and validation of sliding and non-matching grid technology for control surface representation

CL Fenwick, CB Allen

Research output: Contribution to journalArticle (Academic Journal)peer-review

13 Citations (Scopus)

Abstract

Aeroservoelastic simulation of realistic configurations requires the representation of moving control surfaces. Once a control surface is deflected, for example, at the trailing edge of a wing, the surface is no longer continuous and this is considered here. A sliding grid approach is used to allow control surface deflection within a multiblock-structured grid framework. Two methods of information transfer between patched (non-matching) grids are developed and tested in this paper: the first involving halo interpolation and the second, conservative flux interpolation. Results are presented for a range of test cases involving steady and unsteady flows using non-matching and sliding interfaces at block boundaries. It is shown that both methods can be applied to the example of a wing with a deflected control surface, where no advantage is gained by using a significantly more complex, conservative method.
Translated title of the contributionDevelopment and validation of sliding and non-matching grid technology for control surface representation
Original languageEnglish
Pages (from-to)299 - 315
Number of pages17
JournalProceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Volume220
Issue number4
DOIs
Publication statusPublished - Feb 2006

Bibliographical note

Publisher: Institution of Mechanical Engineers

Fingerprint Dive into the research topics of 'Development and validation of sliding and non-matching grid technology for control surface representation'. Together they form a unique fingerprint.

Cite this