Development of a Biologically Inspired Multi-Modal Wing Model for Aerial-Aquatic Robotic Vehicles

R J Lock, R Vaidyanathan, SC Burgess

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

9 Citations (Scopus)

Abstract

This paper presents a numerical model of a morphing wing supporting the development of a biologically inspired vehicle capable of aerial and aquatic of locomotion. The model draws inspiration from the seabird Uria aalge, the common guillemot. It is implemented within a parametric study associated with aerial and aquatic performance, specifically aiming at minimizing energy of locomotion. The implications of varying wing geometry and kinematic parameters are investigated and presented in the form of nested performance charts. Trends within both the aquatic and aerial model are discussed highlighting the implications of parameter variation on the power requirements associated with both mediums. Conflicts of geometric parameter selection are contrasted between the aerial and aquatic model, as well as other trends that impact the design of concept vehicles with this capability. The model has been validated by implementing a heuristic optimization of its key parameters under conditions akin to those of the actual bird; optimal parameters output by the model correlate to the actual behaviour of the guillemot.
Translated title of the contributionDevelopment of a Biologically Inspired Multi-Modal Wing Model for Aerial-Aquatic Robotic Vehicles
Original languageEnglish
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan
Pages3404 - 3409
Number of pages6
Publication statusPublished - Oct 2010

Bibliographical note

Conference Organiser: IEEE/RSJ

Fingerprint Dive into the research topics of 'Development of a Biologically Inspired Multi-Modal Wing Model for Aerial-Aquatic Robotic Vehicles'. Together they form a unique fingerprint.

Cite this