Diene hydroacylation from the alcohol or aldehyde oxidation level via ruthenium-catalyzed C-C bond-forming transfer hydrogenation: synthesis of ß,γ-unsaturated ketones

F Shibahara, J.F Bower, M.J Krische

Research output: Contribution to journalArticle (Academic Journal)peer-review

144 Citations (Scopus)

Abstract

Under the conditions of ruthenium-catalyzed transfer hydrogenation, isoprene couples to benzylic and aliphatic alcohols 1a-g to deliver beta,gamma-unsaturated ketones 3a-g in good to excellent isolated yields. Under identical conditions, aldehydes 2a-g couple to isoprene to provide an identical set of beta,gamma-unsaturated ketones 3a-g in good to excellent isolated yields. As demonstrated by the coupling of butadiene, myrcene, and 1,2-dimethylbutadiene to representative alcohols 1 b, 1 c, and 1 e, diverse acyclic dienes participate in transfer hydrogenative coupling to form beta,gamma-unsatu rated ketones. In all cases, complete branch regioselectivity is observed, and, with the exception of adduct 3j, isomerization to the conjugated enone is not detected. Thus, formal intermolecular diene hydroacylation is achieved from the alcohol or aldehyde oxidation level. In earlier studies employing a related ruthenium catalyst, acyclic dienes were coupled to carbonyl partners from the alcohol or aldehyde oxidation level to furnish branched homoallylic alcohols. Thus, under transfer hydrogenative coupling conditions, all oxidation levels of substrate (alcohol or aldehyde) and product (homoallyl alcohol or beta,gamma-unsaturated ketone) are accessible.
Translated title of the contributionDiene hydroacylation from the alcohol or aldehyde oxidation level via ruthenium-catalyzed C-C bond-forming transfer hydrogenation: synthesis of ß,γ-unsaturated ketones
Original languageEnglish
Pages (from-to)14120 - 14122
Number of pages3
JournalJournal of the American Chemical Society
Volume130
Issue number43
DOIs
Publication statusPublished - 29 Oct 2008

Fingerprint Dive into the research topics of 'Diene hydroacylation from the alcohol or aldehyde oxidation level via ruthenium-catalyzed C-C bond-forming transfer hydrogenation: synthesis of ß,γ-unsaturated ketones'. Together they form a unique fingerprint.

Cite this