Differential gene expression in queen-worker caste determination in bumble-bees

JJM Pereboom*, WC Jordan, S Sumner, RL Hammond, AFG Bourke

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

68 Citations (Scopus)

Abstract

Investigating how differential gene expression underlies caste determination in the social Hymenoptera is central to understanding how variation in gene expression underlies adaptive phenotypic diversity. We investigated for the first time the association between differential gene expression and queen-worker caste determination in the bumble-bee Bombus terrestris. Using suppression subtractive hybridization we isolated 12 genes that were differentially expressed in queen- and worker-destined larvae. We found that the sets of genes underlying caste differences in larvae and adults failed to overlap greatly. We also found that B. terrestris shares some of the genes whose differential expression is associated with caste determination in the honeybee, Apis mellifera, but their expression patterns were not identical. Instead, we found B. terrestris to exhibit a novel pattern, whereby most genes upregulated (i.e. showing relatively higher levels of expression) in queen-destined larvae early in development were upregulated in worker-destined larvae late in development. Overall, our results suggest that caste determination in B. terrestris involves a difference not so much in the identity of genes expressed by queen- and worker-destined larvae, but primarily in the relative timing of their expression. This conclusion is of potential importance in the further study of phenotypic diversification via differential gene expression.

Original languageEnglish
Pages (from-to)1145-1152
Number of pages8
JournalProceedings of the Royal Society B: Biological Sciences
Volume272
Issue number1568
DOIs
Publication statusPublished - 7 Jun 2005

Keywords

  • Bombus terrestris
  • caste determination
  • caste evolution
  • gene expression
  • social insects
  • suppression subtractive hybridization
  • BOMBUS-TERRESTRIS
  • HONEY-BEE
  • APIS-MELLIFERA
  • JUVENILE-HORMONE
  • HYMENOPTERA
  • COLONIES
  • EVOLUTION
  • BEHAVIOR
  • CDNA
  • CONFLICT

Fingerprint

Dive into the research topics of 'Differential gene expression in queen-worker caste determination in bumble-bees'. Together they form a unique fingerprint.

Cite this