Skip to content

Direct measurements of unimolecular and bimolecular reaction kinetics of the Criegee intermediate (CH3)2COO

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)4-15
Number of pages12
JournalJournal of Physical Chemistry A
Issue number1
Early online date18 Oct 2016
DateAccepted/In press - 18 Oct 2016
DateE-pub ahead of print - 18 Oct 2016
DatePublished (current) - 12 Jan 2017


The Criegee intermediate acetone oxide, (CH3)2COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O2 and characterized by synchrotron photoionization mass spectrometry and by cavity ringdown ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO2 was measured using photoionization mass spectrometry and pseudo-first order methods to be (7.3 ± 0.5) × 10-11 cm3 s-1 at 298 K and 4 Torr and (1.5 ± 0.5) × 10-10 cm3 s-1 at 298 K and 10 Torr (He buffer). These values are similar to directly measured rate coefficients of anti-CH3CHOO with SO2, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 Torr and 100 Torr) in N2 from cavity ringdown decay of the ultraviolet absorption of (CH3)2COO yielded even larger rate coefficients, in the range (1.84  0.12) × 10-10 to (2.29 ± 0.08) × 10-10 cm3 s-1. Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, kH/kD = (0.53 ± 0.06), for reactions with SO2, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD3)2COO with NO2 has a rate coefficient at 298 K and 4 Torr of (2.1 ± 0.5) × 10-12 cm3 s-1 (measured with photoionization mass spectrometry), again similar to the reaction of anti-CH3CHOO with NO2. Cavity ringdown measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH3)2COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 ± 70) s-1, is similar to determinations from ozonolysis. The present measurements confirm the large rate coefficient for reaction of (CH3)2COO with SO2 and the small rate coefficient for its reaction with water. Product measurements of the reactions of (CH3)2COO with NO2 and with SO2 suggest that these reactions may facilitate isomerization to 2-hydroperoxypropene, possibly by subsequent reactions of association products.

Download statistics

No data available



  • Full-text PDF (accepted author manuscript)

    Rights statement: This is the author accepted manuscript (AAM). The final published version (version of record) is available online via ACS at Please refer to any applicable terms of use of the publisher.

    Accepted author manuscript, 1 MB, PDF document

    Licence: CC BY-NC


View research connections

Related faculties, schools or groups