TY - JOUR
T1 - Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis
AU - Méric, Guillaume
AU - Mageiros, Leonardos
AU - Pensar, Johan
AU - Laabei, Maisem
AU - Yahara, Koji
AU - Pascoe, Ben
AU - Kittiwan, Nattinee
AU - Tadee, Phacharaporn
AU - Post, Virginia
AU - Lamble, Sarah
AU - Bowden, Rory
AU - Bray, James E.
AU - Morgenstern, Mario
AU - Jolley, Keith A.
AU - Maiden, Martin C.J.
AU - Feil, Edward J.
AU - Didelot, Xavier
AU - Miragaia, Maria
AU - de Lencastre, Herminia
AU - Moriarty, T. Fintan
AU - Rohde, Holger
AU - Massey, Ruth
AU - Mack, Dietrich
AU - Corander, Jukka
AU - Sheppard, Samuel K.
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Some of the most common infectious diseases are caused by bacteria that naturally colonise humans asymptomatically. Combating these opportunistic pathogens requires an understanding of the traits that differentiate infecting strains from harmless relatives. Staphylococcus epidermidis is carried asymptomatically on the skin and mucous membranes of virtually all humans but is a major cause of nosocomial infection associated with invasive procedures. Here we address the underlying evolutionary mechanisms of opportunistic pathogenicity by combining pangenome-wide association studies and laboratory microbiology to compare S. epidermidis from bloodstream and wound infections and asymptomatic carriage. We identify 61 genes containing infection-associated genetic elements (k-mers) that correlate with in vitro variation in known pathogenicity traits (biofilm formation, cell toxicity, interleukin-8 production, methicillin resistance). Horizontal gene transfer spreads these elements, allowing divergent clones to cause infection. Finally, Random Forest model prediction of disease status (carriage vs. infection) identifies pathogenicity elements in 415 S. epidermidis isolates with 80% accuracy, demonstrating the potential for identifying risk genotypes pre-operatively.
AB - Some of the most common infectious diseases are caused by bacteria that naturally colonise humans asymptomatically. Combating these opportunistic pathogens requires an understanding of the traits that differentiate infecting strains from harmless relatives. Staphylococcus epidermidis is carried asymptomatically on the skin and mucous membranes of virtually all humans but is a major cause of nosocomial infection associated with invasive procedures. Here we address the underlying evolutionary mechanisms of opportunistic pathogenicity by combining pangenome-wide association studies and laboratory microbiology to compare S. epidermidis from bloodstream and wound infections and asymptomatic carriage. We identify 61 genes containing infection-associated genetic elements (k-mers) that correlate with in vitro variation in known pathogenicity traits (biofilm formation, cell toxicity, interleukin-8 production, methicillin resistance). Horizontal gene transfer spreads these elements, allowing divergent clones to cause infection. Finally, Random Forest model prediction of disease status (carriage vs. infection) identifies pathogenicity elements in 415 S. epidermidis isolates with 80% accuracy, demonstrating the potential for identifying risk genotypes pre-operatively.
UR - http://www.scopus.com/inward/record.url?scp=85057519497&partnerID=8YFLogxK
U2 - 10.1038/s41467-018-07368-7
DO - 10.1038/s41467-018-07368-7
M3 - Article (Academic Journal)
C2 - 30487573
AN - SCOPUS:85057519497
SN - 2041-1723
VL - 9
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 5034
ER -