Dissolved organic carbon transformations and microbial community response to variations in recharge waters in a shallow carbonate aquifer

Katie Cooper, Fiona Whitaker, Alexandre Anesio, Miranda Naish, Darren Reynolds, Emma Evans

Research output: Contribution to journalArticle (Academic Journal)peer-review

23 Citations (Scopus)
330 Downloads (Pure)


In carbonate aquifers, dissolved organic carbon from the surface drives heterotrophic metabolism, generating CO2 in the subsurface. Although this has been a proposed mechanism for enhanced dissolution at the water table, respiration rates and their controlling factors have not been widely evaluated. This study investigates the composition and concentration of dissolved organic carbon (DOC) reaching the water table from different recharge pathways on a subtropical carbonate island using a combination of DOC concentration measurements, fluorescence and absorption characterisation. In addition, direct measurements of the microbial response to the differing water types were made. Interactions of rainfall with the vegetation, via throughfall and stemflow, increase the concentration of DOC. The highest DOC concentrations are associated with stemflow, overland recharge and dissolution hole waters which interact with bark lignin and exhibit strong terrestrial-derived characteristics. The groundwater samples exhibit the lowest concentrations of DOC and are comprised of refractory humic-like organic matter. The heterotrophic response seems to be controlled by the concentration of DOC in the sample. The terrestrially sourced humic-like matter in the stemflow and dissolution hole samples was highly labile, thus increasing the amount of biologically produced CO2 to drive dissolution. Based on the calculated respiration rates, microbial activity could enhance carbonate dissolution, increasing porosity generation by a maximum of 1 % kyr−1 at the top of the freshwater lens.
Original languageEnglish
Pages (from-to)215-234
Number of pages20
Early online date29 Jul 2016
Publication statusPublished - Aug 2016


  • Dissolved organic carbon 􏰀 Carbonate 􏰀 Heterotrophic respiration 􏰀 Recharge waters 􏰀 Fluorescence EEM 􏰀 Karstification


Dive into the research topics of 'Dissolved organic carbon transformations and microbial community response to variations in recharge waters in a shallow carbonate aquifer'. Together they form a unique fingerprint.

Cite this