Distinguishing Protein-Coding from Non-Coding RNAs through Support Vector Machines

J. Liu, Julian J T Gough, B. Rost

Research output: Contribution to journalArticle (Academic Journal)peer-review

117 Citations (Scopus)
260 Downloads (Pure)

Abstract

RIKEN's FANTOM project has revealed many previously unknown coding sequences, as well as an unexpected degree of variation in transcripts resulting from alternative promoter usage and splicing. Ever more transcripts that do not code for proteins have been identified by transcriptome studies, in general. Increasing evidence points to the important cellular roles of such non-coding RNAs (ncRNAs). The distinction of protein-coding RNA transcripts from ncRNA transcripts is therefore an important problem in understanding the transcriptome and carrying out its annotation. Very few in silico methods have specifically addressed this problem. Here, we introduce CONC (for "coding or non-coding"), a novel method based on support vector machines that classifies transcripts according to features they would have if they were coding for proteins. These features include peptide length, amino acid composition, predicted secondary structure content, predicted percentage of exposed residues, compositional entropy, number of homologs from database searches, and alignment entropy. Nucleotide frequencies are also incorporated into the method. Confirmed coding cDNAs for eukaryotic proteins from the Swiss-Prot database constituted the set of true positives, ncRNAs from RNAdb and NONCODE the true negatives. Ten-fold cross-validation suggested that CONC distinguished coding RNAs from ncRNAs at about 97% specificity and 98% sensitivity. Applied to 102,801 mouse cDNAs from the FANTOM3 dataset, our method reliably identified over 14,000 ncRNAs and estimated the total number of ncRNAs to be about 28,000.
Translated title of the contributionDistinguishing Protein-Coding from Non_coding RNAs through Support Vector Machines
Original languageEnglish
Article numbere29
Number of pages8
JournalPLoS Genetics
Volume2
Issue number4
DOIs
Publication statusPublished - 28 Apr 2006

Fingerprint Dive into the research topics of 'Distinguishing Protein-Coding from Non-Coding RNAs through Support Vector Machines'. Together they form a unique fingerprint.

Cite this