Distributed model based event-triggered control for synchronization of multi-agent systems

Davide Liuzza, Dimos V. Dimarogonas, Mario di Bernardo, Karl H. Johansson

Research output: Contribution to journalArticle (Academic Journal)peer-review

111 Citations (Scopus)
448 Downloads (Pure)

Abstract

This paper investigates the problem of event-triggered control for the synchronization of networks of nonlinear dynamical agents; distributed model-based approaches able to guarantee the synchronization of the overall system are derived. In these control schemes all the agents use a model of their neighbourhood in order to generate triggering instants in which the local controller is updated and, if needed, local information based on the adopted control input is broadcasted to neighbouring agents. Synchronization of the network is proved and the existence of Zeno behaviour is excluded; an event-triggered strategy able to guarantee the existence of a minimum lower bound between inter-event times for broadcasted information and for control signal updating is proposed, thus allowing applications where both the communication bandwidth and the maximum updating frequency of actuators are critical. This idea is further extended in an asynchronous periodic event-triggered schemes where the agents check a trigger condition via a periodic distributed communication without requiring a model based computation.
Original languageEnglish
Pages (from-to)1-7
Number of pages7
JournalAutomatica
Volume73
Early online date3 Sept 2016
DOIs
Publication statusPublished - Nov 2016

Research Groups and Themes

  • Engineering Mathematics Research Group
  • Bristol BioDesign Institute

Keywords

  • Multi-agent systems
  • synthetic biology
  • Event-triggered control
  • Synchronization

Fingerprint

Dive into the research topics of 'Distributed model based event-triggered control for synchronization of multi-agent systems'. Together they form a unique fingerprint.

Cite this