6 Citations (Scopus)
182 Downloads (Pure)

Abstract

A quantitative understanding of the evaporative drying kinetics and nucleation rates of aqueous based aerosol droplets is important for a wide range of applications, from atmospheric aerosols to industrial processes such as spray drying. Here, we introduce a numerical model for interpreting measurements of the evaporation rate and phase change of drying free droplets made using a single particle approach. We explore the evaporation of aqueous sodium chloride and sodium nitrate solution droplets. Although the chloride salt is observed to reproducibly crystallize at all drying rates, the nitrate salt solution can lose virtually all of its water content without crystallizing. The latter phenomenon has implications for our understanding of the competition between the drying rate and nucleation kinetics in these two systems. The nucleation model is used in combination with the measurements of crystallization events to infer nucleation rates at varying equilibrium state points, showing that classical nucleation theory provides a good description of the crystallization of the chloride salt but not the nitrate salt solution droplets. The reasons for this difference are considered.
Original languageEnglish
Article number074503 (2020)
JournalJournal of Chemical Physics
Volume152
Early online date18 Feb 2020
DOIs
Publication statusPublished - 21 Feb 2020

Keywords

  • aerosols
  • colloids
  • nucleation

Fingerprint

Dive into the research topics of 'Drying kinetics and nucleation in evaporating sodium nitrate aerosols'. Together they form a unique fingerprint.

Cite this