Dual stimuli-responsive polysulfone membranes with interconnected networks by a vapor-liquid induced phase separation strategy

Li Jing Zhu*, Hai Ming Song, Gang Wang, Zhi Xiang Zeng, Qun Ji Xue

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

16 Citations (Scopus)


Dual pH- and thermo-responsive polysulfone (PSf) membranes with three-dimensionally interconnected networks are fabricated by introducing poly(acrylic acid-co-N-isopropylacrylamide) (P(AA-NIPAm)) into the membrane surfaces and pore walls during membrane formation via a vapor-liquid induced phase separation (V-LIPS) process. After introducing the copolymers of P(AA-NIPAm), the fabricated membranes exhibit impressive open network pores on the surfaces, meanwhile their cross-sectional structure turns from classical asymmetric finger-like structure into bi-continuous nanopores throughout the whole thickness of membrane, due to high solution viscosity and low mass transfer rate of VIPS process. Furthermore, pure water permeation tests show that the pure water permeation (Lp) and the molecular weight cutoff (MWCO) of the fabricated PSf/P(AA-NIPAm) membranes increases sharply as the solution pH decreases from 12.5 to 1.5 and the feed temperature increases from 25 to 50 °C, attributing to the increasing pore size. With the decreasing mass ratio of AA to NIPAm, the pH-responsive coefficient decreases, while the temperature- responsive coefficient increases. In particular, for the fabricated membrane with the mass ratio of AA to NIPAm of 3 to 2, Lp changes from ∼16.0 to ∼821.4 L m−2 h−1 bar−1 and MWCO increases from ∼223.1 to ∼1493.2 kDa, as the filtration experiments are operated with feed pH and temperature of 12.5/25 °C and 1.5/50 °C respectively. The results proposed in this study provide a novel mode for design and development dual responsive porous membranes in situ, which will enable good separation of various materials and expand the scope of membrane applications.

Original languageEnglish
Pages (from-to)585-592
Number of pages8
JournalJournal of Colloid and Interface Science
Early online date24 Jul 2018
Publication statusPublished - Dec 2018


  • Dual thermo- and pH-response
  • Gating membranes
  • In situ cross-linking polymerization
  • Phase separation
  • Polysulfone membranes


Dive into the research topics of 'Dual stimuli-responsive polysulfone membranes with interconnected networks by a vapor-liquid induced phase separation strategy'. Together they form a unique fingerprint.

Cite this