TY - JOUR

T1 - Dynamical simulations of classical stochastic systems using matrix product states

AU - Johnson, T. H.

AU - Clark, S. R.

AU - Jaksch, D.

PY - 2010/9/16

Y1 - 2010/9/16

N2 - We adapt the time-evolving block decimation (TEBD) algorithm, originally devised to simulate the dynamics of one-dimensional quantum systems, to simulate the time evolution of nonequilibrium stochastic systems. We describe this method in detail; a system's probability distribution is represented by a matrix product state (MPS) of finite dimension and then its time evolution is efficiently simulated by repeatedly updating and approximately refactorizing this representation. We examine the use of MPS as an approximation method, looking at parallels between the interpretations of applying it to quantum state vectors and probability distributions. In the context of stochastic systems we consider two types of factorization for use in the TEBD algorithm: non-negative matrix factorization (NMF), which ensures that the approximate probability distribution is manifestly non-negative, and the singular value decomposition (SVD). Comparing these factorizations, we find the accuracy of the SVD to be substantially greater than current NMF algorithms. We then apply TEBD to simulate the totally asymmetric simple exclusion process (TASEP) for systems of up to hundreds of lattice sites in size. Using exact analytic results for the TASEP steady state, we find that TEBD reproduces this state such that the error in calculating expectation values can be made negligible even when severely compressing the description of the system by restricting the dimension of the MPS to be very small. Out of the steady state we show for specific observables that expectation values converge as the dimension of the MPS is increased to a moderate size.

AB - We adapt the time-evolving block decimation (TEBD) algorithm, originally devised to simulate the dynamics of one-dimensional quantum systems, to simulate the time evolution of nonequilibrium stochastic systems. We describe this method in detail; a system's probability distribution is represented by a matrix product state (MPS) of finite dimension and then its time evolution is efficiently simulated by repeatedly updating and approximately refactorizing this representation. We examine the use of MPS as an approximation method, looking at parallels between the interpretations of applying it to quantum state vectors and probability distributions. In the context of stochastic systems we consider two types of factorization for use in the TEBD algorithm: non-negative matrix factorization (NMF), which ensures that the approximate probability distribution is manifestly non-negative, and the singular value decomposition (SVD). Comparing these factorizations, we find the accuracy of the SVD to be substantially greater than current NMF algorithms. We then apply TEBD to simulate the totally asymmetric simple exclusion process (TASEP) for systems of up to hundreds of lattice sites in size. Using exact analytic results for the TASEP steady state, we find that TEBD reproduces this state such that the error in calculating expectation values can be made negligible even when severely compressing the description of the system by restricting the dimension of the MPS to be very small. Out of the steady state we show for specific observables that expectation values converge as the dimension of the MPS is increased to a moderate size.

UR - http://www.scopus.com/inward/record.url?scp=77957280185&partnerID=8YFLogxK

U2 - 10.1103/PhysRevE.82.036702

DO - 10.1103/PhysRevE.82.036702

M3 - Article (Academic Journal)

C2 - 21230208

AN - SCOPUS:77957280185

VL - 82

JO - Physical Review E: Statistical, Nonlinear, and Soft Matter Physics

JF - Physical Review E: Statistical, Nonlinear, and Soft Matter Physics

SN - 1539-3755

IS - 3

M1 - 036702

ER -