TY - JOUR
T1 - Dynamics and control of twisting bi-stable structures
AU - Arrieta, Andres F.
AU - Van Gemmeren, Valentin
AU - Anderson, Aaron J.
AU - Weaver, Paul M.
PY - 2018/1/15
Y1 - 2018/1/15
N2 - Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states of the bi-stable twisting I-beam structures. The obtained optimal piezoelectric actuator positioning is not necessarily intuitive and when used with the proposed dynamic actuation strategy serve as a blueprint for the actuation of such multi-stable compliant structures to produce fast and large deflections with highly embeddable actuators. This class of structures has potential applications in aerospace systems and soft/compliant robotics.
AB - Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states of the bi-stable twisting I-beam structures. The obtained optimal piezoelectric actuator positioning is not necessarily intuitive and when used with the proposed dynamic actuation strategy serve as a blueprint for the actuation of such multi-stable compliant structures to produce fast and large deflections with highly embeddable actuators. This class of structures has potential applications in aerospace systems and soft/compliant robotics.
KW - bi-stability
KW - compliant structures
KW - macro fiber composites
KW - morphing
KW - nonlinear dynamics
KW - snap-through
UR - http://www.scopus.com/inward/record.url?scp=85041015753&partnerID=8YFLogxK
U2 - 10.1088/1361-665X/aa96d3
DO - 10.1088/1361-665X/aa96d3
M3 - Article (Academic Journal)
AN - SCOPUS:85041015753
SN - 0964-1726
VL - 27
JO - Smart Materials and Structures
JF - Smart Materials and Structures
IS - 2
M1 - 025006
ER -