Effects of BMI, Fat Mass, and Lean Mass on Asthma in Childhood: A Mendelian Randomization Study

Raquel Granell*, A J W Henderson, David Evans, George Davey Smith, Andy R Ness, Sarah P Lewis, Tom M. Palmer, Jonathan A C Sterne

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

55 Citations (Scopus)
302 Downloads (Pure)

Abstract

Background

Observational studies have reported associations between body mass index (BMI) and asthma, but confounding and reverse causality remain plausible explanations. We aim to investigate evidence for a causal effect of BMI on asthma using a Mendelian randomization approach.

Methods and Findings

We used Mendelian randomization to investigate causal effects of BMI, fat mass, and lean mass on current asthma at age 7½ y in the Avon Longitudinal Study of Parents and Children (ALSPAC). A weighted allele score based on 32 independent BMI-related single nucleotide polymorphisms (SNPs) was derived from external data, and associations with BMI, fat mass, lean mass, and asthma were estimated. We derived instrumental variable (IV) estimates of causal risk ratios (RRs). 4,835 children had available data on BMI-associated SNPs, asthma, and BMI. The weighted allele score was strongly associated with BMI, fat mass, and lean mass (all p-values<0.001) and with childhood asthma (RR 2.56, 95% CI 1.38–4.76 per unit score, p = 0.003). The estimated causal RR for the effect of BMI on asthma was 1.55 (95% CI 1.16–2.07) per kg/m2, p  = 0.003. This effect appeared stronger for non-atopic (1.90, 95% CI 1.19–3.03) than for atopic asthma (1.37, 95% CI 0.89–2.11) though there was little evidence of heterogeneity (p = 0.31). The estimated causal RRs for the effects of fat mass and lean mass on asthma were 1.41 (95% CI 1.11–1.79) per 0.5 kg and 2.25 (95% CI 1.23–4.11) per kg, respectively. The possibility of genetic pleiotropy could not be discounted completely; however, additional IV analyses using FTO variant rs1558902 and the other BMI-related SNPs separately provided similar causal effects with wider confidence intervals. Loss of follow-up was unlikely to bias the estimated effects.

Conclusions

Higher BMI increases the risk of asthma in mid-childhood. Higher BMI may have contributed to the increase in asthma risk toward the end of the 20th century.

Original languageEnglish
Article numbere1001669
Number of pages14
JournalPLoS Medicine
Volume11
Issue number7
DOIs
Publication statusPublished - 1 Jul 2014

Fingerprint Dive into the research topics of 'Effects of BMI, Fat Mass, and Lean Mass on Asthma in Childhood: A Mendelian Randomization Study'. Together they form a unique fingerprint.

Cite this