Effects of spatial resolution on a raster based model of flood flow

MS Horritt*, PD Bates

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

250 Citations (Scopus)


The scaling properties of a simple raster-based flood flow model are investigated. Models of resolution varying from 1000 to 10 m are tested and predictions compared with satellite observations of inundated area and ground measurements of floodwave travel times, with a calibration strategy being used to determine channel friction coefficients, The optimum calibration is found to be stable with respect to changes in scale when the model is calibrated against the observed inundated area, the model reaching maximum performance at a resolution of 100 m, after which no improvement is seen with increasing resolution. Projecting predicted water levels onto a high resolution DEM improves performance further, and a resolution of 500 m proves adequate for predicting water levels. Predicted floodwave travel times are, however, strongly dependent on model resolution, and water storage in low lying floodplain areas near the channel is identified as an important mechanism affecting wave propagation velocity. A near channel floodplain storage version of the model is shown to be much more stable with respect to changes in scale when the model is calibrated against floodwave travel times, and shown to represent the retardation of the floodwave caused by water storage near the channel. The model cannot be calibrated to give both acceptable travel times and inundated area, and in this respect performance is poor. (C) 2001 Elsevier Science B.V. All rights reserved.

Original languageEnglish
Pages (from-to)239-249
Number of pages11
JournalJournal of Hydrology
Issue number1-4
Publication statusPublished - 15 Nov 2001


  • inundation
  • spatial resolution
  • flood
  • calibration
  • modelling
  • scaling

Cite this