Electric Signals Regulate the Directional Migration of Oligodendrocyte Progenitor Cells (OPCs) viaβ1 Integrin

Bangfu Zhu, Matthew Nicholls, Yu Gu, Gaofeng Zhang, Chao Zhao, Robin J M Franklin, Bing Song

Research output: Contribution to journalArticle (Academic Journal)peer-review

9 Citations (Scopus)
392 Downloads (Pure)


The guided migration of neural cells is essential for repair in the central nervous system (CNS). Oligodendrocyte progenitor cells (OPCs) will normally migrate towards an injury site to re-sheath demyelinated axons; however the mechanisms underlying this process are not well understood. Endogenous electric fields (EFs) are known to influence cell migration in vivo, and have been utilised in this study to direct the migration of OPCs isolated from neonatal Sprague-Dawley rats. The OPCs were exposed to physiological levels of electrical stimulation, and displayed a marked electrotactic response that was dependent on β1 integrin, one of the key subunits of integrin receptors. We also observed that F-actin, an important component of the cytoskeleton, was re-distributed towards the leading edge of the migrating cells, and that this asymmetric rearrangement was associated with β1 integrin function.
Original languageEnglish
Article number1948
Number of pages12
JournalInternational Journal of Molecular Sciences
Issue number11
Early online date22 Nov 2016
Publication statusPublished - Nov 2016

Bibliographical note

Special Issue: Pluripotent Stem Cell Technology for Disease Modeling, Drug Discovery and Regenerative Medicine


  • electric field
  • oligodendrocyte progenitor
  • cell migration
  • integrin


Dive into the research topics of 'Electric Signals Regulate the Directional Migration of Oligodendrocyte Progenitor Cells (OPCs) viaβ1 Integrin'. Together they form a unique fingerprint.

Cite this