Skip to content

Electrical and Thermal Effects of Fault Currents in Aircraft Electrical Power Systems with Composite Aerostructures

Research output: Contribution to journalArticle

Original languageEnglish
Article number8355687
Pages (from-to)660-670
Number of pages11
JournalIEEE Transactions on Transportation Electrification
Issue number3
Early online date7 May 2018
DateAccepted/In press - 19 Apr 2018
DateE-pub ahead of print - 7 May 2018
DatePublished (current) - Sep 2018


The upward trend for the use of electrical power on state-of-The-Art aircraft is resulting in significant change to the design of power system architectures and protection systems for these platforms. There is a pull from the aerospace industry to integrate the electrical power system with the aircraft's structural materials to form an embedded system, reducing the need for bulky cable harnesses. This directly impacts the fault response for ground faults and ultimately the development of appropriate protection systems. Such structural materials include composites such as carbon fiber reinforced polymer (CFRP). This paper presents the experimental capture and analysis of the response of CFRP to electrical fault current, which indicates the need for two distinct sets of electrical ground fault detection criteria for low and high resistance faults and identifies the threshold resistance for this distinction. By extrapolating these results to develop models of CFRP for use in transient simulation studies, the key electrical fault detection thresholds for speed, selectivity, and sensitivity for a dc system rail to ground fault through CFRP are identified. This provides the first set of key factors for electrical fault detection through CFRP, providing a platform for the design of fully integrated structural and electrical power systems, with appropriate electrical protection systems.

    Research areas

  • Carbon fiber reinforced polymer (CFRP), electrical protection, more-electric aircraft (MEA)

Download statistics

No data available



  • Full-text PDF (accepted author manuscript)

    Rights statement: This is the author accepted manuscript (AAM). The final published version (version of record) is available online via IEEE at Please refer to any applicable terms of use of the publisher.

    Accepted author manuscript, 0.99 MB, PDF document


View research connections

Related faculties, schools or groups