Electron correlation: The many-body problem at the heart of chemistry

David P. Tew, Wim Klopper*, Trygve Helgaker

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

80 Citations (Scopus)


The physical interactions among electrons and nuclei, responsible for the chemistry of atoms and moleculesis well described by quantum mechanics and chemistry is therefore fully described by the solutions of the Schrodinger equation. In all but the simplest systems we must be content with approximate solutions, the principal difficulty being the treatment of the correlation between the motions of the many electrons, arising from their mutual repulsion. This article aims to provide a clear understanding of the physical concept of electron correlation and the modem methods used for its approximation. Using helium as a simple case study and beginning with an uncorrelated orbital picture of electronic motion, we first introduce Fermi correlation, arising from the symmetry requirements of the exact wave function, and then consider the Coulomb correlation arising from the mutual Coulomb repulsion between the electrons. Finally, we briefly discuss the general treatment of electron correlation in modern electronic-structure theory, focussing on the Hartree-Fock and coupled-cluster methods and addressing static and dynamical Coulomb correlation. (C) 2007 Wiley Periodicals, Inc.

Original languageEnglish
Pages (from-to)1307-1320
Number of pages14
JournalJournal of Computational Chemistry
Issue number8
Publication statusPublished - Jun 2007


  • electron correlation
  • Coulomb correlation
  • Fermi correlation
  • static and dynamical corelation
  • CUSP


Dive into the research topics of 'Electron correlation: The many-body problem at the heart of chemistry'. Together they form a unique fingerprint.

Cite this