Abstract
In this article, we revisit the classical problem of channel coding and obtain novel results on properties of capacity- achieving codes. Specifically, we give a linear algebraic characterization of the set of capacity-achieving input distributions for discrete memoryless channels. This allows us to characterize the dimension of the manifold on which the capacity-achieving distributions lie. We then proceed by examining empirical properties of capacity-achieving codebooks by showing that the joint-type of k-tuples of codewords in a good code must be close to the k- fold product of the capacity-achieving input distribution. While this conforms with the intuition that all capacity-achieving codes must behave like random capacity-achieving codes, we also show that some properties of random coding ensembles do not hold for all codes. We prove this by showing that there exist pairs of communication problems such that random code ensembles simultaneously attain capacities of both problems, but certain (superposition ensembles) do not.Due to lack of space, several proofs have been omitted but can be found at https://sites.google.com/view/yihan/
Original language | English |
---|---|
Title of host publication | 2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 2337-2342 |
Number of pages | 6 |
ISBN (Electronic) | 9781728164328, 9781728164311 |
ISBN (Print) | 9781728164335 |
DOIs | |
Publication status | Published - 24 Aug 2020 |
Event | 2020 IEEE International Symposium on Information Theory, ISIT 2020 - Los Angeles, United States Duration: 21 Jul 2020 → 26 Jul 2020 |
Publication series
Name | IEEE International Symposium on Information Theory - Proceedings |
---|---|
Volume | 2020-June |
ISSN (Print) | 2157-8095 |
Conference
Conference | 2020 IEEE International Symposium on Information Theory, ISIT 2020 |
---|---|
Country/Territory | United States |
City | Los Angeles |
Period | 21/07/20 → 26/07/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.